Rabu, 25 Maret 2015

APLIKASI TERMODINAMIKA (Part 5)

21.      TURBIN GAS

Gas Turbine Engine
Gas-turbine engine adalah suatu alat yang memanfaatkan gas sebagai fluida untuk memutar turbin dengan pembakaran internal. Didalam turbin gas energi kinetik dikonversikan menjadi energi mekanik melalui udara bertekanan yang memutar roda turbin sehingga menghasilkan daya. Sistem turbin gas yang paling sederhana terdiri dari tiga komponen yaitu kompresor, ruang bakar dan turbin gas.

Ø  Prinsip Kerja Sistem Turbin Gas (Gas-Turbine Engine)

Udara masuk kedalam kompresor melalui saluran masuk udara (inlet). Kompresor berfungsi untuk menghisap dan menaikkan tekanan udara tersebut, sehingga temperatur udara juga meningkat. Kemudian udara bertekanan ini masuk kedalam ruang bakar. Di dalam ruang bakar dilakukan proses pembakaran dengan cara mencampurkan udara bertekanan dan bahan bakar. Proses pembakaran tersebut berlangsung dalam keadaan tekanan konstan sehingga dapat dikatakan ruang bakar hanya untuk menaikkan temperatur. Gas hasil pembakaran tersebut dialirkan ke turbin gas melalui suatu nozel yang berfungsi untuk mengarahkan aliran tersebut ke sudu-sudu turbin. Daya yang dihasilkan oleh turbin gas tersebut digunakan untuk memutar kompresornya sendiri dan memutar beban lainnya seperti generator listrik, dll. Setelah melewati turbin ini gas tersebut akan dibuang keluar melalui saluran buang (exhaust).


Secara umum proses yang terjadi pada suatu sistem turbin gas adalah sebagai berikut:
Pemampatan (compression) udara di hisap dan dimampatkan

1. Pembakaran (combustion) bahan bakar dicampurkan ke dalam ruang bakar dengan udara kemudian di bakar.
2. Pemuaian (expansion) gas hasil pembakaran memuai dan mengalir ke luar melalui nozel (nozzle).
3. Pembuangan gas (exhaust) gas hasil pembakaran dikeluarkan lewat saluran pembuangan.

 

       Ø  Klasifikasi Turbin Gas

Turbin gas dapat dibedakan berdasarkan siklusnya, kontruksi poros dan lainnya. Menurut siklusnya turbin gas terdiri dari:
·                     Turbin gas siklus tertutup (Close cycle)
·                     Turbin gas siklus terbuka (Open cycle)
Perbedaan dari kedua tipe ini adalah berdasarkan siklus fluida kerja. Pada turbin gas siklus terbuka, akhir ekspansi fluida kerjanya langsung dibuang ke udara atmosfir, sedangkan untuk siklus tertutup akhir ekspansi fluida kerjanya didinginkan untuk kembali ke dalam proses awal.

Dalam industri turbin gas umumnya diklasifikasikan dalam dua jenis yaitu :

1. TURBIN GAS POROS TUNGGAL ( single shaft )
Turbin jenis ini digunakan untuk menggerakkan generator listrik yang menghasilkan energi listrik untuk keperluan proses di industri.

2. TURBIN GAS POROS GANDA
Turbin jenis ini merupakan turbin gas yang terdiri dari turbin bertekanan tinggi dan turbin bertekanan rendah, dimana turbin gas ini digunakan untuk menggerakkan beban yang berubah seperti kompresor pada unit proses.

Siklus-Siklus Turbin Gas
      Ø  Tiga siklus turbin gas yang dikenal secara umum yaitu:
1.            Siklus Ericson
Merupakan siklus mesin kalor yang dapat balik (reversible) yang terdiri dari dua proses isotermis dapat balik (reversible isotermic) dan dua proses isobarik dapat balik (reversible isobaric). Proses perpindahan panas pada proses isobarik berlangsung di dalam komponen siklus internal (regenerator), dimana effisiensi termalnya adalah : hth = 1 – T1/Th, dimana T1 = temperatur buang dan Th = temperatur panas.
2.            Siklus Stirling
Merupakan siklus mesin kalor dapat balik, yang terdiri dari dua proses isotermis dapat balik (isotermal reversible) dengan volume tetap (isokhorik). Efisiensi termalnya sama dengan efisiensi termal pada siklus Ericson.
3.            Siklus Brayton
Siklus ini merupakan siklus daya termodinamika ideal untuk turbin gas, sehingga saat ini siklus ini yang sangat populer digunakan oleh pembuat mesin turbine atau manufacturer dalam analisa untuk performanceupgrading. Siklus Brayton ini terdiri dari proses kompresi isentropik yang diakhiri dengan proses pelepasan panas pada tekanan konstan. Pada siklus Bryton tiap-tiap keadaan proses dapat dianalisa secara berikut:
  
      Ø  Proses

1 ke 2 (kompresi isentropik): Kerja yang dibutuhkan oleh kompresor: Wc = ma (h2 – h1).
Proses 2 ke 3, pemasukan bahan bakar pada tekanan konstan. Jumlah kalor yang dihasilkan: Qa = (ma + mf) (h3 – h2).Proses 3 ke 4, ekspansi isentropik didalam turbin. Daya yang dibutuhkan turbin: WT = (ma + mf) (h3 – h4).Proses 4 ke 1, pembuangan panas pada tekanan konstan ke udara. 

      Ø  Perkembangan Gas Turbin
              Disain pertama turbin gas dibuat oleh John Wilkins seorang Inggris pada tahun 1791. Sistem tersebut bekerja dengan gas hasil pembakaran batu bara, kayu atau minyak, kompresornya digerakkan oleh turbin dengan perantaraan rantai roda gigi. Pada tahun 1872, Dr. F. Stolze merancang sistem turbin gas yang menggunakan kompresor aksial bertingkat ganda yang digerakkan langsung oleh turbin reaksi tingkat ganda. Tahun 1908, sesuai dengan konsepsi H. Holzworth, dibuat suatu sistem turbin gas yang mencoba menggunakan proses pembakaran pada volume konstan. Tetapi usaha tersebut dihentikan karena terbentur pada masalah konstruksi ruang bakar dan tekanan gas pembakaran yang berubah sesuai beban. Tahun 1904, “Societe des Turbomoteurs” di Paris membuat suatu sistem turbin gas yang konstruksinya berdasarkan disain Armengaud dan Lemate yang menggunakan bahan bakar cair. Temperatur gas pembakaran yang masuk sekitar 450 C dengan tekanan 45 atm dan kompresornya langsung digerakkan oleh turbin.
            Selanjutnya, pada tahun 1935 sistem turbin gas mengalami perkembangan yang pesat dimana diperoleh efisiensi sebesar kurang lebih 15%. Pesawat pancar gas yang pertama diselesaikan oleh “British Thomson Houston Co” pada tahun 1937 sesuai dengan konsepsi Frank Whittle (tahun 1930).

22.     KULKAS

      Ø  Sistem Kerja Kulkas
                        Sistem kerja lemari es dimulai dari bagian kompresor sebagai jantung kulkas yang berfungsi sebagai tenaga penggerak. Pada saat dialiri listrik, motor kompresor akan berputar dan memberikan tekanan pada bahan pendingin. Bahan pendingin yang berwujud gas apabila diberi tekanan akan menjadi gas yang bertekanan dan bersuhu tinggi. Dengan wujud seperti itu, memungkinkan refrigerant mengalir menuju kondensor.

Pada titik kondensasi, gas tersebut akan mengembun dan kembali menjadi wujud cair, Refrigerant cair bertekanan tinggi akan terdorong menuju pipa kapiler. Dengan begitu refrigerant akan naik ke evaporator akibat tekanan kapilaritas yang dimiliki oleh pipa kapiler. Saat berada di dalam evaporator, refrigerant cair akan menguap dan wujudnya kembali menjadi gas yang memiliki tekanan dan suhu yang sangat rendah. Akibatnya, udara yang terjebak di antara evaporator menjadi bersuhu rendah dan akhirnya terkondensasi menjadi wujud cair. Pada kondisi yang berulang memungkinkan udara tersebut membeku menjadi butiran-butiran es. Hal tersebut terjadi pada benda atau air yang sengaja diletakkan di dalam evaporator.

       Ø  KOMPONEN – KOMPONENYA

            - Kompresor
                  Kompresor merupakan bagian terpenting di dalam kulkas . Apabila di analogikan dengan tubuh manusia, kompresor sama dengan jantung yang berfungsi memompa darah ke seluruh tubuh begitu juga dengan kompresor. Kompresor berfungsi memompa bahan pendingin keseluruh bagian kulkas .

Kondensor
Kondensor adalah alat penukar kalor untuk mengubah wujud gas bahan pendingin pada suhu dan tekanan tinggi menjadi wujud cair. Jenis kondensor yang banyak digunakan pada teknologi kulkas saat ini adalah kondensor dengan pendingin udara. Yang digunakan pada sistem refrigrasi kulkas kecil maupun sedang. kondensor seperti ini memiliki bentuk yang sederhana dan tidak memerlukan perawatan khusus .saat lemari es bekerja kondensor akan terasa hangat bila dipegang.

Filter
Filter ( saringan ) berguna menyaring kotoran yang mungkin terbawa aliran bahan pendingin yang keluar setelah melakukan serkulasi agar tidak masuk kedalam konpresor dan pipa kapiler. Selain itu , bahan pendingan yang akan disalurkan pada proses berikutnya lebih bersih sehingga dapat menyerap kalor lebih maksimal.

Evaporator
Evaporator berfungsi menyerap panas dari benda yang di masukkan kedalam kulkas, kemudian evaporator menguapkan bahan pendingin untuk melawan panas dan mendinginkannya. Sesuai fungsinya evaporator adalah alat penguap bahan pendingin agar efektif dalam menyerap panas dan menguapkan bahan pendingin, evaporator di buat dari bahan logam anti karat, yaitu tembaga dan almunium.

Thermostat
Thermostat memiliki banyak sebutan antara lain temperatur kontrol dan cool control. Apapun sebutannya, thermostat berfungsi mengatur kerja kompresor secara otomatis bedasarkan batasan suhu pada setiap bagian kulkas. Bisa dikatakan, thermostat adalah saklar otomatis berdasarkan pengaturan suhu. Jika suhau evaperator sesuai dengan pengatur suhu thermostat, secara otomatis thermostat akan memutuskan listrik ke kompresor.

Heater
Hampir keseluruan kulkas nofrost dan sebagian kecil kulkas defrost dilengkapi dengan pemanas ( heater ). Pemanas berfungsi mencairkan bunga es yang terdapat di evapurator . selain itu pemanas dapat mencegah terjadinya penimbunan bunga es pada bagian rak es dan rak penyimpan buah di bawah rak es.

Fan motor
Fan motor atau kipas angin berguna untuk menghembuskan angin . pada kulkas ada dua jenis fan

1. fan motor evaporator
Berfungsi menghembuskan udara dingin dari evaporator keseluruh bagian rak ( rak es , sayur ,dan buah ).
2.fan motor kondensot
kipas angin ini diletakkan pada bagian bawah kulkas yang memiliki kondensor yang berukuran kecil yang berfungsi mengisap atau mendorong udara melalui kondensor dan kompresor . selain itu berfungsi mendinginkan kompresor.

Overload motor protector
Adalah komponen pengaman yang letaknya menyatu dengan terminal kompresor. Cara kerjanya serupa dengan sekering yang dapat menyambung dan memutus arus listrik. Alat ini dapat melindungi komponen kelistrikan dari kerusakan arus akibat arus yang dihasilkan kompresor melebihi arus acuan normal.

Bahan Pendingin (Refrigerant)
Refrigerant adalah zat yang mudah diubah wujudnya dari gas menjadi cair, ataupun sebaliknya. Jenis bahan pendingin sangat beragam. Setiap jenis bahan pendingin memiliki karakteristik yang berbeda.

        Jadi pada kulkas juga terdapat sistim termodinamika di sana, karna terdapat perubahan energi dari energi yang satu ke energi yang lain

23.     Dispenser panas dan dingin.

Priyono, Thursday, January 15, 2009
Dispenser digunakan untuk mendinginkan dan memanaskan air dalam galon aqua ukuran 19 liter. didalam dispenser bagian atas terdapat tabung yang terbuat dari stenles steel yang dibagian luar tabungnya dililitkan pipa tembaga ukuran 1/4 yang berfungsi untuk mendinginkan air. lilitan pipa pada luar tabung dapat disamakan dengan sebuah evaporator pada AC atau pada lemari es
cara kerja pendinginan pada dispenser dapat disamakan bila kita meletakan sebuah gelas dari stenles steel yang berisi air kedalam bagian frezzer pada lemari es. pada bagian tengah dispenser terdapat tabung yang dibagian tengahnya dililitkan sebuah heater/pemanas dan thermostat. fungsi dari heater tersebut berguna untuk memanaskan air yang berada pada tabung, air akan mengalir/keluar melalui kran warna merah karena air panas dalam tabung menghasilkan suatu tekanan. sedangkan air yang dingin keluar dari kran yang berwarna biru didasari oleh proses gravitasi.

Kerusakan-kerusakan yang terjadi pada dispenser adalah sbb:
·         air yang keluar melalui kran warna biru tidak dingin
- chek thermostat yang berada pada belakang dispenser, apakah diposisi paling rendah?
jika ya, putar thermostat kearah kanan/keposisi tinggi.

- check pada dua kaki terminal thermostat, apakah ada sebuah tahanan/ohm untuk dapat mengalirkan arus listrik ke compressor?
- check compressor, apakah dapat beroperasi atau tidak?
jika tidak beroperasi cek relay compressor, overload compressor dan kabel-kabel yang menuju ke compressor.

- check kebocoran freon pada semua sistem sambungan pipa.
·          air keluar dari bagian bawah dispenser
- check karet seal yang berada pada kedua kran.
- check drat luar pada kran dan drat dalam sambungan kran, apakah mengalami kebocoran?
- check, apakah tabung air panas yang berada pada bagian tengah mengalami kebocoran?
- check selang untuk pengurasan air yang berada pada bagian bawah tabung air panas, apakah pecah atau mengalami kebocoran?  air yang keluar dari kran warna merah tidak panas sama sekali
- chek, apakah heater pemanas mengalami kerusakan, ukur dengan tester pada kedua kabel terminal pada posisi skala ohm.
- check, overload pada tabung air panas, apakah ada tahanan/ohm untuk mengalirkan arus listrik.
- check juga kabel-kabel yang menuju ke heater pemanas apakah terputus atau terbakar?
- check switch on-off heater pada bagian belakang dispenser, apakah pada posisi on?
·         Cara membuka kap depan dispenser sbb :
- angkat terlebih dahulu galon yang berisi air, dan keringkan air yang berada pada tabung stenless dan tabung air panas dengan cara membuka tutup pipa selang pengurasan yang terdapat pada bagian bawah konderser. atau bisa juga dengan menekan kedua kran dispenser.
- buka baut pada bagian belakang atas, agar kap bagian tabung atas terlepas.
- gunakan obeng kembang yang panjang untuk membuka baut kap depan dispenser, masukan obeng kembang panjang melalui sela-sela kondenser pada bagian belakang dispenser.
- setelah baut terlepas, lepaskan kedua kran dispenser dengan cara memutar kekiri.
- setelah kran terlepas buka bagian kap bagian kran dengan cara menariknya ke belakang.
kap dispenser ada 3 buah, satu terdapat pada bagian atas tabung stenless yang berfungsi untuk menahan beban galon air. kap yang kedua dibagian kran dispenser, dan kap yang ketiga dibagian bawah kran dispenser. sebelum melepas kap bagian bawah kran, perhatikan bagian bawah kap apakah terdapat baut? jika tidak ada baut, anda bisa melepaskannya dengan cara menarik kebelakang.

DAFTAR PUSTAKA


http://fisikaasiiik.blogspot.com/2011/01/aplikasi-termodinamika.html  ( Di Akses Rabu, 25 Maret 2015, jam 16:14 )

Tidak ada komentar:

Posting Komentar